訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : On commutativity of diagrams of type Π1 factors Right : On commutativity of diagrams of type ∏1 factors
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : B) D. Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), 201-216. GHJ) F. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter Graphs and Towers of Algebras, MSRI Publ. 14, Springer-Verlag, New York, 1989. J) V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25. K) Y. Kawahigashi, Classification of paragroup actions on subfactors, Publ. Res. Inst. Math. Sci. 31 (1995), 481-517. NT) M. Nakamura and Z. Takeda, On the fundamental theorem of the Galois theory for finite factors, Proc. Japan Acad. 36 (1960), 258-260. O) A. Ocneanu, Quantum symmetry, differential geometry of finite graphs and classification of subfactors, Tokyo University Seminary Notes 45, 1991. P1) S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), 253-268. P2) S. Popa, Maximal injective subalgebras in factors associated with free groups, Adv. Math. 50 (1983), 27-48. P3) S. Popa, Relative dimension, towers of projections and commuting squares of subfactors, Pacific J. Math. 137 (1989), 181-207. P4) S. Popa, Classification of subfactors: the reduction to commuting square, Invent. Math. 101 (1990), 19-43. P5) S. Popa,Classification of amenable subfactors of type Π, Acta Math. 172 (1994), 163-255. P6) S. Popa,Sur la classification des sous-facteurs d'indice fini du facteur hyperfini, C. R. Acad. Sci. Paris 311 (1990), 95-100. PP1) M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ec. Norm. Sup. 19 (1986), 57-106. PP2) M. Pimsner and S. Popa, Iterating the basic construction, Trans. Am. Math. Soc. 310 (1988), 127-133. PP3) M. Pimsner and S. Popa, Finite dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal. 98 (1991), 270-291. S) T. Sano, Commuting co-commuting squares and finite dimensional Kac algebras, Pacific J. Math. 172 (1996), 243-253. Su) V. S. Sunder, On commuting squares and subfactors, J. Funct. Anal. 101 (1991), 286-311. Sut) C. Sutherland, Cohomology and extensions of operator algebras H, Publ. Res. Inst. Math. Sci. 16 (1980), 135-174. ST) I. N. Steward and D. O. Tall, Chapman and Hall, New York, 1987. SW) T. Sano and Y. Watatani, Angles between two subfactors, J. Operator Theory 32 (1994), 209-241. SZ) S. Stratila and L. Zsido, Lectures on von Neumann Algebras, Abacus Press/Ed. Academiei, Turnbridge Wells/Bucuresti, 1979. T) M. Takesaki, Theory of Operator Algebra I, Springer, Berlin, 1979. Te) T. Teruya, Characteristic intermediate subfactors, Preprint, 1995. W) Y. Watatani, Index for C*-subalgebras, Memoirs A.M.S. No. 424, 1990. WW) Y. Watatani and J. Wierzbicki, Commuting squares and relative entropy for two subfactors, J. Funct. Anal. 133 (1995), 329-341. We) H. Wenzl, Hecke algebras of type A and subfactors, Invent. Math. 92 (1988), 345-383. Wi) J. Wierzbicki, An estimate of the depth from an intermediate subfactor, Publ. Res. Inst. Math. Sci. 30 (1994), 1139-1144.
Right : [B] D. Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), 201-216. [GHJ] F. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter Graphs and Towers of Algebras, MSRI Publ. 14, Springer-Verlag, New York, 1989. [J] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25. [K] Y. Kawahigashi, Classification of paragroup actions on subfactors, Publ. Res. Inst. Math. Sci. 31 (1995), 481-517. [NT] M. Nakamura and Z. Takeda, On the fundamental theorem of the Galois theory for finite factors, Proc. Japan Acad. 36 (1960), 258-260. [O] A. Ocneanu, Quantum symmetry, differential geometry of finite graphs and classification of subfactors, Tokyo University Seminary Notes 45, 1991. [P1] S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), 253-268. [P2] S. Popa, Maximal injective subalgebras in factors associated with free groups, Adv. Math. 50 (1983), 27-48. [P3] S. Popa, Relative dimension, towers of projections and commuting squares of subfactors, Pacific J. Math. 137 (1989), 181-207. [P4] S. Popa, Classification of subfactors: the reduction to commuting square, Invent. Math. 101 (1990), 19-43. [P5] S. Popa,Classification of amenable subfactors of type ∏, Acta Math. 172 (1994), 163-255. [P6] S. Popa,Sur la classification des sous-facteurs d'indice fini du facteur hyperfini, C. R. Acad. Sci. Paris 311 (1990), 95-100. [PP1] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ec. Norm. Sup. 19 (1986), 57-106. [PP2] M. Pimsner and S. Popa, Iterating the basic construction, Trans. Am. Math. Soc. 310 (1988), 127-133. [PP3] M. Pimsner and S. Popa, Finite dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal. 98 (1991), 270-291. [S] T. Sano, Commuting co-commuting squares and finite dimensional Kac algebras, Pacific J. Math. 172 (1996), 243-253. [Su] V. S. Sunder, On commuting squares and subfactors, J. Funct. Anal. 101 (1991), 286-311. [Sut] C. Sutherland, Cohomology and extensions of operator algebras ∏, Publ. Res. Inst. Math. Sci. 16 (1980), 135-174. [ST] I. N. Steward and D. O. Tall, Chapman and Hall, New York, 1987. [SW] T. Sano and Y. Watatani, Angles between two subfactors, J. Operator Theory 32 (1994), 209-241. [SZ] S. Stratila and L. Zsido, Lectures on von Neumann Algebras, Abacus Press/Ed. Academiei, Turnbridge Wells/Bucuresti, 1979. [T] M. Takesaki, Theory of Operator Algebra I, Springer, Berlin, 1979. [Te] T. Teruya, Characteristic intermediate subfactors, Preprint, 1995. [W] Y. Watatani, Index for C*-subalgebras, Memoirs A. M. S. No. 424, 1990. [WW] Y. Watatani and J. Wierzbicki, Commuting squares and relative entropy for two subfactors, J. Funct. Anal. 133 (1995), 329-341. [We] H. Wenzl, Hecke algebras of type A and subfactors, Invent. Math. 92 (1988), 345-383. [Wi] J. Wierzbicki, An estimate of the depth from an intermediate subfactor, Publ. Res. Inst. Math. Sci. 30 (1994), 1139-1144.