Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Harmonic functions on finitely sheeted unlimited covering surfaces
Dedicated to Professor Masayuki Ito on his sixtieth birthday
Hiroaki MASAOKAShigeo SEGAWA
著者情報
ジャーナル フリー

2003 年 55 巻 2 号 p. 323-334

詳細
抄録
We denote by HP(R) and (HB(R), resp.) the class of positive (bounded, resp.) harmonic functions on a Riemann surface R. Consider an open Riemann surface W possessing a Green's function and a p-sheeted ( 1<p<∞) unlimited covering surface ˜{W} of W with projection map \varphi. We give a necessary and sufficient condition, in terms of Martin boundary, for HX(W)\circ\varphi=HX(˜{W})(X=P, B). We also give some examples illustrating the above result when W is the unit disc.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事 次の記事
feedback
Top