抄録
A new approach is expected for heat resisting metal joints with inorganic adhesive. In the present study, the mechanical characterization of the inorganic adhesive and the strength evaluation of metal joints are realized by an experimental procedure that includes a static test for single lap joints bonded with inorganic adhesives. The inorganic adhesive can be cured at 150°C, and the maximum temperature resistance proposed is up to 1,200°C. A tensile shear test for the joints with a nickel adherend is performed at an elevated temperature of up to 400°C. The effect of material property, overlap length, and thickness of adherend on the joint strength is discussed based on stress analysis for corresponding joint models using a Finite Element Method. It is important to confirm whether fracture occurred in the adhesive layer or at the interface between the adhesive and the adherend. Therefore, the deformation and fracture behavior of the adhesive layer is investigated microscopically by the photographs of a scanning electron microscope (SEM) for the fracture surface.