抄録
発話文を感情ごとに分類したコーパスを構築し,入力文と最も類似度が高い発話文を含むコーパスの感情を推定結果として出力する用例ベースの感情推定手法が提案されている.従来手法ではコーパスを構築する際,発話テキストの収集者が個人個人で発話文の分類先を決定しているため,分類先を決定する基準が個々によってぶれてしまう.これにより,例えば“希望”のコーパスの中に喜びの発話文が混じるといったことが起こり,推定成功率を下げてしまう.本稿ではこの問題を解決するため,コーパスごとにおける入力文の形態素列の出現回数を用いて,入力文とコーパスの類似度を定義する.そしてこの類似度を従来手法に導入した新たな類似度計算式を提案する.これにより,誤って分類されてしまった発話文の影響を緩和することができる.評価実験では従来手法と比べて成功率が 21.5 ポイント向上し,提案手法の有効性が確認できた.