Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Detergents, Surfactants, Interface and Colloid
Fluorescent Anisotropy Evaluation of Bicelle Formation Employing Carboxyl BODIPY and Pyrromethene
Shogo TaguchiYuta KimuraYuka AkiyamaYasuaki TachibanaTakuji Yamamoto
Author information
JOURNAL OPEN ACCESS

2022 Volume 71 Issue 3 Pages 353-362

Details
Abstract

Bicelles are extensively used as the parent assemblies of functional membrane materials. This study characterizes membrane fluidity in fatty acid/detergent bicelles containing carboxyl boron-dipyrromethene (BODIPY C12) and pyrromethene as fluorescent probe molecules. The anisotropy value of BODIPY C12 and pyrromethene in the phospholipid vesicles depended on the phase state of the vesicles. The anisotropy of the fluorescent probe molecules in bicelles of oleic acid/3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropane sulfonate (OA/CHAPSO) was then evaluated. The OA/CHAPSO bicelles were prepared by mixing CHAPSO detergent solution with OA vesicles at different molar ratios, X OA (= [OA]/([OA]+[CHAPSO])). The anisotropies of the probes in the OA/CHAPSO bicelles increased with decreasing X OA. BODIPY C12 in the range 0.30 ≤ X OA ≤ 0.70 exhibited a distinctly larger anisotropy than pyrromethene. This result agreed with the increase in packing density associated with the adsorption of CHAPSO molecules on the OA bilayer membrane in the OA/CHAPSO bicelle, revealing that the anisotropy of BODIPY C12 molecule enables membrane-fluidity evaluation in OA/CHAPSO bicelles.

graphical abstract Fullsize Image
Content from these authors
© 2022 by Japan Oil Chemists' Society

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top