The Journal of Poultry Science
Online ISSN : 1349-0486
Print ISSN : 1346-7395
ISSN-L : 1346-7395
General Physiology
Effects of Probiotics on the Expression of Cathelicidins in Response to Stimulation by Salmonella Minnesota Lipopolysaccharides in the Proventriculus and Cecum of Broiler Chicks
Elsayed S.I. MohammedNaoki IsobeYukinori Yoshimura
Author information
JOURNALS FREE ACCESS

2016 Volume 53 Issue 4 Pages 298-304

Details
Abstract

The aim of this study was to determine whether probiotic-feeding affected the expression of cathelicidins (CATHs), a major family of antimicrobial peptides, in response to lipopolysaccharides (LPS) challenge in the proventriculus and cecum of broiler chicks. One-day-old male Chunky broiler chicks were fed with or without 0.4% probiotics for 7 days (P-group and non-P-group, respectively). Then, they were orally challenged with no LPS (0-LPS), 1 μg LPS (1-LPS), or 100 μg LPS (100-LPS) (n=5 in all groups) in Experiment 1, and with no LPS or 1 μg LPS (n=6 in all groups) in Experiment 2. Five hours after LPS challenge, the proventriculi and ceca were collected to analyze CATHs expression. Expression of CATHs was examined at first by reverse transcription-polymerase chain reaction (RT-PCR) using the 0-LPS chicks of non-P-group. The differences in CATHs expression upon probiotics-feeding and LPS were analyzed by real time-PCR. All four CATHs (CATH1, 2, 3 and 4) were expressed in the proventriculus and cecum of chicks. In the proventriculus, the expression of CATHs after LPS challenge did not show significant differences between non-P and P-groups in Experiment 1 and 2. In the cecum, the interactions of the effects of probiotics and LPS on the expression of CATH2 in Experiment 1 and CATH1 and 2 in Experiment 2 were significant, and their expression in 1-LPS chicks was higher in P-group than in non-P-group. However, CATH3 and 4 did not show any significant differences between non-P- and P-groups challenged with LPS. These results suggest that probiotics-feeding may stimulate the immunodefense system mediated by CATH2 and possibly CATH1 against infection by Gram-negative bacteria in the cecum.

Information related to the author
© 2016 by Japan Poultry Science Association
Previous article Next article
feedback
Top