The Journal of Poultry Science
Online ISSN : 1349-0486
Print ISSN : 1346-7395
ISSN-L : 1346-7395

This article has now been updated. Please use the final version.

Heat Stress Directly Affects Intestinal Integrity in Broiler Chickens
Fumika Nanto-HaraMotoi KikusatoShyuichi OhwadaMasaaki Toyomizu
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 0190004

Details
Abstract

A study using pair-feeding technique was conducted to determine whether heat exposure directly or indirectly (via reduced feed intake) increases intestinal mucosal damage and permeability to endotoxin in broiler chickens. Male broiler chickens (Ross 308), 27-d-old, were subjected to one of the three treatments (n=8): 1) thermo-neutral conditions (24°C) with ad libitum feed intake, 2) heat stress conditions (33°C) with ad libitum feed intake, or 3) pair-feeding under thermo-neutral conditions, with the feed intake identical to that of heat-stressed chickens. Using these groups, two experiments were performed to evaluate temporal changes in the intestinal morphology in response to each treatment. In experiment 1, chickens were sacrificed after 24 h of exposure to the treatment conditions, while in experiment 2, chickens were sacrificed after 12 or 72 h of exposure to the treatment conditions. In experiment 1, exposure to heat stress conditions for 24 h significantly decreased both the villus height to crypt depth ratio and number of proliferating cell nuclear antigen (PCNA)-positive cells in the duodenum and increased the plasma endotoxin concentration. These findings were not observed in pair-fed chickens. In experiment 2, intestinal integrity and function were unaffected by 12 h of heat stress. On the other hand, chickens exposed to heat stress for 72 h exhibited significantly damaged intestinal morphology in the duodenum as well as increased plasma endotoxin concentration; these negative effects were not observed in pair-fed chickens. These findings suggest that the intestinal morphology and permeability changes observed in chickens that are heat-stressed for 24-72 h are due to the heat stress conditions and not due to reduced feed intake.

Content from these authors
© 2019 by Japan Poultry Science Association

This article is licensed under a Creative Commons [Attribution-NonCommercial-ShareAlike 4.0 International] license. In accordance with the license, anyone may download, reuse, copy, reprint, distribute, or modify articles published in the JPS for not-for-profit purposes, if they cite the original authors and source properly. If anyone remix, transform, or build upon the material, the user must distribute their contributions under the same license. For for-profit or commercial use, a written permission by the Editorial Board of JPS is mandatory.
https://creativecommons.org/licenses/by-nc-sa/4.0/
feedback
Top