主催: The Japanese Pharmacological Society, The Japanese Society of Clinical Pharmacology
会議名: WCP2018 (18th World Congress of Basic and Clinical Pharmacology)
開催地: Kyoto
開催日: 2018/07/01 - 2018/07/06
[Background] Atypical antipsychotics are associated with an increased risk of hyperglycemia, thus limiting their clinical use. This study focused on finding the molecular mechanism underlying antipsychotic-induced hyperglycemia. [Methods and Results] First, we searched for drug combinations in the FDA Adverse Event Reporting System (FAERS) database wherein a coexisting drug reduced the hyperglycemia risk of atypical antipsychotics, and found that a combination with vitamin D analogues significantly decreased the occurrence of quetiapine-induced adverse events relating diabetes mellitus in FAERS. Experimental validation using mice revealed that quetiapine acutely caused insulin resistance, which was mitigated by dietary supplementation with cholecalciferol. Further database analysis of the relevant signaling pathway and gene expression predicted quetiapine-induced downregulation of Pik3r1, a critical gene acting downstream of insulin receptor. Focusing on the phosphatidylinositol 3-kinase (PI3K) signaling pathway, we found that the reduced expression of Pik3r1 mRNA was reversed by cholecalciferol supplementation in skeletal muscle, and that insulin-stimulated glucose uptake into C2C12 myotube was inhibited in the presence of quetiapine, which was reversed by concomitant calcitriol in a PI3K-dependent manner. [Conclusion] These results suggest that vitamin D coadministration prevents antipsychotic-induced hyperglycemia and insulin resistance by upregulation of PI3K function.