Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents
Moving Horizon Estimation with Probabilistic Data Association for Object Tracking Considering System Noise Constraint
Tomoya KikuchiKenichiro NonakaKazuma Sekiguchi
著者情報
ジャーナル オープンアクセス

2020 年 32 巻 3 号 p. 537-547

詳細
抄録

Object tracking is widely utilized and becomes indispensable in automation technology. In environments containing many objects, however, occlusion and false recognition frequently occur. To alleviate these issues, in this paper, we propose a novel object tracking method based on moving horizon estimation incorporating probabilistic data association (MHE-PDA) through a probabilistic data association filter (PDAF). Since moving horizon estimation (MHE) is accomplished through numerical optimization, we can ensure that the estimation is consistent with physical constraints and robust to outliers. The robustness of the proposed method against occlusion and false recognition is verified by comparison with PDAF through simulations of a cluttered environment.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
前の記事 次の記事
feedback
Top