日本ロボット学会誌
Online ISSN : 1884-7145
Print ISSN : 0289-1824
ISSN-L : 0289-1824
論文
BMIを介したパーソナルモビリティロボットの操作支援
田上 拓弥星野 智史
著者情報
ジャーナル フリー

2022 年 40 巻 5 号 p. 445-448

詳細
抄録

We have thus far presented a brain-machine-interface, BMI, for users of personal mobility robots. However, once the BMI predicts a wrong control command, both the user and robot face the danger of collision accidents. In this paper, therefore, we propose a fail-safe controller based on CNN (Convolutional Neural Network) for assisting users of personal mobility robots with the BMI. In addition to the control command, a depth map for the input image is simultaneously predicted by the fail-safe controller through multi-task learning. For this purpose, CAE (Convolutional Autoencoder) and DCGAN (Deep Convolutional Generative Adversarial Networks) are used instead of the CNN. In the experiments, we show that the fail-safe performance is increased by predicting the depth map for the input image. Finally, the fail-safe controller based on the DCGAN yields the best performance.

著者関連情報
© 2018 日本ロボット学会
前の記事 次の記事
feedback
Top