人工知能学会第二種研究会資料
Online ISSN : 2436-5556
A New Method of Model Selection for Value Function Approximation in Reinforcement Learning
秋山 貴幸八谷大岳杉山 将
著者情報
研究報告書・技術報告書 フリー

2008 年 2008 巻 DMSM-A703 号 p. 09-

詳細
抄録

In reinforcement learning, the use of a linear model for value function approximation is promising due to its high scalability to large-scale problems. When we use such a method in practical reinforcement learning problems, how we choose an appropriate model for good approximation is quite important because the approximation performance heavily depends on the choice of the model. In this paper, we propose a new method of model selection with sample data, and we demonstrate the effectiveness of the proposed method in chain walk and inverted pendulum problems.

著者関連情報
© 2008 著作者
前の記事 次の記事
feedback
Top