人工知能学会第二種研究会資料
Online ISSN : 2436-5556
ファンダメンタルファクターモデル(リターンモデル)における機械学習手法の応用可能性検証
杉友 盛佑南 正太郎
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 FIN-019 号 p. 95-

詳細
抄録

Fundamental factor models are one of the important methods for the quantitative active investors (Quants), so many investors and researchers use fundamental factor models in their work. But often we come up against the problem that highly effective factors do not aid in our portfolio performance. We think one of the reasons why is that the traditional method is based on multiple linear regression. Therefore in this paper, we tried to apply our machine learning methods to fundamental factor models as the return model. The results show that applying machine learning methods yield good portfolio performance and effectiveness more than the traditional methods.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top