人工知能学会第二種研究会資料
Online ISSN : 2436-5556
深層学習と高頻度注文情報による株価動向推定
田代 大悟和泉 潔
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 FIN-019 号 p. 98-

詳細
抄録

In this paper, we propose order-based approach to predict future movements of a stock price. Our models employ a convolutional neural network(CNN) over embedded orders that have quantitative and qualitative variables. For each dataset of stock codes, the models outperform traditional feature-based approaches. Furthermore, we show that training under less influence of noise can be performed by applying an averaging filter to embedded feature space. Analysis of the embedding layer reveals that the models put emphasis on the features of market orders that are correlated with price return.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top