人工知能学会第二種研究会資料
Online ISSN : 2436-5556
社内知識の活用を支援する知識グラフ自動生成
福田 悠貴仁禮 和男大西 舞子関根 聡松本 裕治古崎 晃司
著者情報
研究報告書・技術報告書 フリー

2025 年 2024 巻 SWO-064 号 p. 05-

詳細
抄録

To reduce development time, we are creating a chatbot system using Retrieval-Augmented Generation (RAG) to handle specialized inquiries. Challenges include the unfamiliarity of Large Language Model (LLM) with specific terms and the handling of ambiguous queries. We propose using a knowledge graph to supplement terms with explanations, synonyms, and hierarchical concepts. We developed a method using LLM to construct knowledge graphs for RAG more efficiently, maintaining accuracy while significantly reducing processing time compared to traditional methods. This paper details the methods for automating synonym and hierarchical relationship estimation using LLM.

著者関連情報
© 2025 著作者
前の記事 次の記事
feedback
Top