人工知能学会研究会資料 言語・音声理解と対話処理研究会
Online ISSN : 2436-4576
Print ISSN : 0918-5682
75回 (2015/10)
会議情報

再帰型ニューラルネットワークを用いた対話破綻検出と言語モデルのマルチタスク学習
小林 颯介海野 裕也福田 昌昭
著者情報
会議録・要旨集 フリー

p. 10-

詳細
抄録

For detecting dialog breakdowns, we make it as a classification problem using features of sentences in the dialog. The feature including context information will perform better on the task. Recurrent neural networks (RNN) can encode sentences to fixed-length feature vectors, which are based on previous contexts. In this paper, we propose a multi-task learning method of language modeling and detecting dialog breakdowns for RNN and entended models. We conducted comparative experiments for our various RNN models and learning methods on dataset of Dialog dreakdown detection challenge, and show that our proposed model has very high precision, low recall, high accuracy and very small mean squared error for prediction of dialog breakdown labels compared to other participants.

著者関連情報
© 2015 人工知能学会
前の記事 次の記事
feedback
Top