日本計算工学会論文集
Online ISSN : 1347-8826
ISSN-L : 1344-9443
CNNに基づく鶏肝臓画像における脂肪肝分類に対する転移学習の効果検証
鄭 宏杰中林 靖増田 正人西 宏起山中 大介高橋 伸一郎伯野 史彦宮内 陽介岡崎 敬吉田 一寛塩谷 隆二
著者情報
ジャーナル フリー

2020 年 2020 巻 1 号 p. 20201003

詳細
抄録

Fat content is an important index of the added value of meat and livestock by-products. In this study, CNN was used to classify the normal liver and fatty liver to identify the morphology of chicken liver. To recognize the appearance of chicken liver, the feature extraction method, and the trained deep learning model vgg16 were used for transfer learning. The validity of vgg16 is verified by comparing it with the baseline model without transfer learning.

著者関連情報
© 2020 The Japan Society For Computational Engineering and Science
前の記事 次の記事
feedback
Top