日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
動的な点に対するVoronoi図とその応用について
今井 桂子
著者情報
ジャーナル フリー

1991 年 1 巻 2 号 p. 127-134

詳細
抄録
Recently, the Voronoi diagram for moving objects has been investigated in connection with motion planning in robotics and geometric optimization problems in computational geometry. In this paper, we consider the Voronoi diagram for moving points parametrized by t in the plane, whose coordinates are polynomials or rational functions of t. We show that the dynamic Voronoi diagram has the combinatorial complexity of O(n^2λ_<s+2>(n)) and can be computed in O(n^2λ_<s+1>(n)log n) time and O(n) space, where s is some fixed number and λ_s(n) is the maximum length of (n, s) Davenport-Schinzel sequence.
著者関連情報
© 1991 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top