日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
Edwards-Wilkinson方程式の解の分散について
松山 貴本田 勝也三井 斌友
著者情報
ジャーナル フリー

2001 年 11 巻 2 号 p. 87-102

詳細
抄録
The Edwards-Wilkinson (EW) equation is a stochastic partial differential equation which mathematically models the growing rough surfaces. It has been pointed out that the variance of the solution of the EW equation diverges in spatial dimensions equal to or larger than 2. Based on mathematical and numerical analyses for the EW equation, we give two means to avoid the divergence. The first one is the smoothing of the EW equation by introducing a fourth order derivative. The second is to replace the Gaussian white noise with a less singularly correlated noise. These are confirmed by numerical calculations, and suggest a more reasonable modelling for the growing rough surface phenomenon.
著者関連情報
© 2001 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top