日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
Taylor級数法による常微分方程式の解法
平山 弘小宮 聖司佐藤 創太郎
著者情報
ジャーナル フリー

2002 年 12 巻 1 号 p. 1-8

詳細
抄録
The arithmetic operations and functions of Taylor series can be defined by C++ language. The functions which consist of arithmetic operations, pre-defined functions and conditional statements can be expanded in Taylor series. Using this, the solution of an ordinary differential equation can be expanded in Taylor series. The solution can be expanded up to arbitrary order, so the calculation formula of arbitrary order can be used instead of Runge-Kutta formula. Taylor series can be used for the evaluations of the errors and the optimal step size within given error allowance easily. In addition, we can transform Taylor series into Pade series, which give arbitrary order, high precision and A-stable formula for solving ordinary differential equation numerically.
著者関連情報
© 2002 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top