日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
積分方程式法による不伸長弾性リングの分岐解析
眞鍋 尚登坂 宣好本間 俊雄
著者情報
ジャーナル フリー

1998 年 8 巻 1 号 p. 67-79

詳細
抄録
The problem of determining possible equilibrium states of buckled elastic rings subjected to a uniform pressure is discussed in this paper. This problem is known as the nonlinear bifurcation problem in which there exist many bifurcation solutions and limit points. The nonlinear governing equations based on the Bernoulli-Euler theory of elastica are transformed into the nonlinear integral equations. The integral equations are discretized by means of the numerical integral procedure. In order to find the bifurcation solution at a bifurcation point, the bifurcation technique in conjunction with the arc-length method is applied effectively. In numerical results for the pressure P (0≥P≥100) it is shown that there exist nine bifurcation solutions.
著者関連情報
© 1998 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top