日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
分布関数の再帰方程式による確率論的破壊力学の解法の提案 : 第2報:決定的時間発展系のC^1級写像への拡張
秋葉 博吉村 忍矢川 元基
著者情報
ジャーナル フリー

1998 年 8 巻 1 号 p. 81-106

詳細
抄録
This paper describes a new method for Probabilistic Fracture Mechanics (PFM). The present authors have previously developed a new method for PFM, named Recursive Distribution (RD) method. The method depends on the construction of the Lebesgue-Stieltjes measure through a deterministic mapping defining a crack growth process. Here the mapping is extended from C^1 isomorphism to C^1 mapping which allows a weak discontinuity. The critical points of the mapping are classified, and the Lebesgue decomposition is given to the distribution of crack geometry using the classification. The present method is applied to an analysis of LWR's piping integrity problem, and almost the same results as those obtained by the Monte Carlo (MC) method are obtained. CPU time of the RD method is less than 1/10 of the MC method.
著者関連情報
© 1998 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top