日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
Mathieu微分方程式の逆固有値問題
宮崎 佳典浅井 信吉蔡 東生池辺 八洲彦
著者情報
ジャーナル フリー

1998 年 8 巻 2 号 p. 199-222

詳細
抄録
Given a complex number λ, we consider the problem of finding those values of q for which the Mathieu's equation ω″(z)+(λ-2qcos2z)ω(z)=0 admits π- or 2π- periodic solutions. This is an inverse problem to the usual one where q is given and λ, an eigenvalue of the equation, is unknown. In this paper, we propose to solve the inverse problem by a matrix method. We will give an extremely accurate asymptotic error estimate. In addition, we present a method with a good rate of convergence that calculates the point (q, λ) such that λ is an eigenvalue satisfying dλ/dq=0.
著者関連情報
© 1998 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top