生体医工学
Online ISSN : 1881-4379
Print ISSN : 1347-443X
ISSN-L : 1347-443X
点群データを用いた血流予測ネットワークの予測精度に対する血管座標の影響
白石 敬一郎太田 信安西 眸リー ガオヤン
著者情報
ジャーナル フリー

2021 年 Annual59 巻 Abstract 号 p. 510

詳細
抄録

背景:大動脈と冠動脈の形状から内部の血行動態を短時間に予測するため,我々はディープラーニングネットワークモデルを開発した.しかしこのネットワークモデルはデータに対して位置のレジストレーションを行う必要があると考えられる.本研究では,入力データの位置のずれと予測精度の関係について調べた.方法:冠動脈性心疾患の患者110人の大動脈と冠動脈の形状データを使用した.これらの形状に変形を加えることで人工的に血管形状を作成し,データ数を1100個に拡張した.これらに対してCFDを行い,1000個をトレーニングデータ,100個をテストデータとした.予測精度は速度の平均二乗誤差(MSE)で評価した.トレーニングデータの存在する学習の内挿部分をトレーニング範囲と呼び,この範囲内外で一つのテストデータを移動させて,その予測精度を算出した.また範囲内での移動について,予測誤差の可視化をした.結果:トレーニング範囲内で平行移動させたとき,元の位置よりも精度が高くなる位置があった.範囲外に平行移動させたとき,ある位置から急激に精度が落ちていくような非線形の傾向があった.また,患者固有の流れが見られる部分で特に誤差が大きくなった.結論:我々の開発したネットワークモデルを使って血流予測を行う上で,位置のレジストレーションの重要性が示唆された.

著者関連情報
© 2021 社団法人日本生体医工学会
前の記事 次の記事
feedback
Top