Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Cultivation of Piezotolerant and Piezophilic Hyperthermophiles with a Newly Developed Constant High Pressure and Temperature Culturing and Monitoring System
Fumiaki MoriAkira IjiriTomoya NishimuraTaisuke WakamatsuNozomi KatsukiYuki Morono
著者情報
ジャーナル オープンアクセス HTML
電子付録

2023 年 38 巻 6 号 論文ID: ME23055

詳細
抄録

The Earth’s microbial biosphere extends from ambient to extreme environments, including deep-sea hydrothermal vents and subseafloor habitats. Despite efforts to understand the physiological adaptations of these microbes, our knowledge is limited due to the technological challenges associated with reproducing in situ high temperature (HT)-high hydrostatic pressure (HHP) conditions and sampling HT-HHP cultures. In the present study, we developed a new high temperature and pressure (HTP) incubation system that enabled the maintenance of HT-HHP conditions while sampling incubation medium and mostly eliminated non-biological reactions, including hydrogen generation or the leakage of small gaseous molecules. The main characteristics of our system are (1) a chamber made of gold with gold-etched lid parts that suppress the majority of non-biological reactions, (2) the exceptional containment of dissolved gas, even small molecules, such as hydrogen, and (3) the sampling capacity of intra-chamber liquid without depressurization and the isobaric transfer of a culture to inoculate new medium. We initially confirmed the retention of dissolved hydrogen in the incubation container at 82°C and 20‍ ‍MPa for 9 days. Cultivation tests with an obligate hyperthermophilic piezophile (Pyrococcus yayanosii), hydrogenotrophic hyperthermophile (Archaeoglobus profundus), and heterotrophic hyperthermophile (Pyrococcus horikoshii) were successful based on growth monitoring and chemical ana­lyses. During HTP cultivation, we observed a difference in the duration of the lag phase of P. horikoshii, which indicated the potential effect of a pressure change on the physiology of piezophiles. The present results suggest the importance of a cultivation system designed and developed explicitly for HTP conditions with the capacity for sampling without depressurization of the entire system.

著者関連情報
© 2023 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事
feedback
Top