計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-0402
会議情報

LSTMに基づく火散布沼の養殖場における塩分濃度予測解析
(学習データに対するデータ同化流況解析結果の適用可能性に関する検証)
*杉山 雄大倉橋 貴彦上林 恵太岩中 祐一佐藤 誠浩西村 規宏Joan Baiges
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper describes a prediction method of the salinity concentration at the sea urchin farm in Hichirippu-numa, Hokkaido, using long short-term memory (LSTM). LSTM is one of the machine learning methods and also solves long term time series forecasting tasks. One of the main factors affecting the accuracy of the machine learning model is the data quality, although the observations at remote locations are used for real-time salinity concentration forecasting of sea urchin farm in the Hichirippu-numa. In order to improve the data quality, we focus on a data assimilation flow analysis based on Kalman filter FEM (KF-FEM). KF-FEM can estimate the water elevation at the specific location in computational domain. By using the results of KF- FEM considering precipitation, we generated more reliable training data for LSTM. In this study, we proposed to apply the results of the data assimilation flow analysis into training data of LSTM and confirmed proposed method is better accuracy of salinity concentration forecasting than conventional method.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top