環境工学総合シンポジウム講演論文集
Online ISSN : 2424-2969
セッションID: 415
会議情報
415 ニューラルネットワークによる気象条件を考慮したエネルギー需要量予測(エネルギー需給と空調システム評価・解析,環境保全型エネルギー技術分野)
横山 良平佐竹 諒一涌井 徹也伊東 弘一
著者情報
会議録・要旨集 フリー

詳細
抄録
In order to operate energy supply systems optimally from the viewpoint of energy and cost savings, it is necessary to predict the energy demand accurately. In this paper the parameters of a neural network model are identified with a global quasi-optimal method, and the method of predicting the energy demand was examined. In addition to the past energy demand, as an input to a model, weather conditions, such as an actual measurement and predicted values of air temperature, relative humidity, the sensible temperature, and the discomfort index, were taken into consideration. The prediction method was applied to the cooling demand in a building used for a benchmark test of a variety of prediction methods, and its validity and effectiveness are clarified.
著者関連情報
© 2006 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top