日本機械学会関東支部総会講演会講演論文集
Online ISSN : 2424-2691
ISSN-L : 2424-2691
会議情報
914 ニューラルネットワークを用いた結合部の設計パラメータ推定法 : 部材 2 本からなる結合部
大塚 浩之岡部 顕史冨岡 昇
著者情報
会議録・要旨集 フリー

p. 293-294

詳細
抄録
In this paper, the method, which estimates the design parameters (thickness, shape of cross section, length of partition, position of flange etc.) using neural network, is described. We deal with simple joined part models composed of 2 beams as an antomobile body structure. At first, some learning data are prepared by changing the design parameters. Next, the relation between joint stiffness and design parameter is constructed by using neural network. Once the trained neural network is given, the design parameter can be estimated by only inputting the some values of joint stiffness into the trained neural network. It was shown that the design parameters were obtained from the values of joint stiffness by using the trained neural network.
著者関連情報
© 2002 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top