日本機械学会関東支部総会講演会講演論文集
Online ISSN : 2424-2691
ISSN-L : 2424-2691
セッションID: 11C05
会議情報

ポリマーアロイ相分離構造の逆解析への深層学習の導入
*平出 和也平山 健太遠藤 克浩村松 眞由
著者情報
会議録・要旨集 認証あり

詳細
抄録

By using some machine learning methods, in this study, we develop a framework that deals with forward analysis to predict a property from a polymer alloy’s phase separation structure and inverse design to generate the structure from the property. We consider only Young’s modulus as the property in this study. In our framework, the forward analysis is performed by using a convolutional neural network (CNN) and the inverse design is realized by a random search toward a model combining a generative adversarial network (GAN) and a CNN. This framework is applicable to various properties at a low computational cost, and the latent variables belonging to the GAN are useful for feature extraction.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top