ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-F12
会議情報
1A1-F12 場の状況に依存した正常行動のモデル化(ネットワークロボティクス)
岡本 宏美西尾 修一馬場口 登萩田 紀博森井 藤樹
著者情報
会議録・要旨集 フリー

詳細
抄録
In this report, we propose a method for anomality detection by classifying people behavior patterns based on situation. In public spaces, people in most cases behave quite typically based on some regular patterns. The proposed method learns these patterns from the observed trajectories by composing Hidden Markov Model for each separate situations such as train arrival and departure. The anomalous behaviors are detected by thresholding the output probability. Over 2,500 trajectories observed in an actual station were used for evaluation, which resulted in a fine performance with the overall classification rate of 94.2%.
著者関連情報
© 2008 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top