ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-G07
会議情報
2P2-G07 強化学習法BRLによる自律移動ロボットの狭路通行行動の獲得(進化・学習とロボティクス)
井本 礼一郎保田 俊行大倉 和博
著者情報
会議録・要旨集 フリー

詳細
抄録
Reinforcement Learning (RL) is one of promissing approaches for controlling an autonomous robot. However, its performance is quite sensitive to the segmentation of state and action spaces. This paper describes an RL mobile robot, the task of which is passing through a narrow short route instead of a wide but long route. The robot needs appropriately segmented state and action spaces to avoid punishments, otherwise the robot tends to fail to pass through the narrow route. In order to overcome this unwanted situation, we apply our proposed technique, named Bayesian-discrimination-function-based Reinforcement Learning (BRL). We investigate the performance of BRL through computer simulations and analyze the learning process.
著者関連情報
© 2008 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top