抄録
This paper presents a method that utilizes state value functions of macro actions to explore appropriate behavior efficiently in a multi-agent environment. First, the agent learns a few macro actions and the state value functions based on reinforcement learning beforehand. Second, an appropriate initial controller for learning cooperative behavior is generated based on the state value functions. The initial controller utilizes the state values of the macro actions so that the learner tends to select a good macro action. By combination of the ideas and a two-layer hierarchical system, the proposed method shows better performance during the learning than conventional methods. This paper shows a case study of 4 (defense team) on 5 (offense team) game task, and the learning agent (a passer of the offense team) successfully acquired the teamwork plays (pass and shoot) within shorter learning time.