ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
会議情報
2A1-J05 Random Forest を用いたRGB-D 画像からの物体識別(ロボットビジョン(1))
豊吉 政彦加賀美 聡小笠原 司山崎 俊太郎
著者情報
会議録・要旨集 フリー

p. _2A1-J05_1-_2A1-J05_4

詳細
抄録
It is very important for robot to find objects, especially for a home service robot which works in human living environment. To find the environment contains many kinds of objects, we need the object recognition method using large dataset. Random Forest, developed by Leo Breiman[1], is an ensemble classifier composed of many decision trees . The method outputs the class that is the mode of the classes output by individual trees. Each trees can be calculated independently. So, the algorithm runs efficiently on large databases. Thousands of input variables can be handled without variable deletion. In this paper, we present a method for the object recognition by random forest using a large dataset of RGB-D images. And we evaluate its acuuracy and computationnal cost.
著者関連情報
© 2013 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top