ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-X07
会議情報
1A1-X07 多重学習器を用いる強化学習 : 有用でない学習空間を増加させた場合の学習効率低下の考察(進化・学習とロボティクス)
西澤 智恵子松井 博和
著者情報
会議録・要旨集 フリー

詳細
抄録
We have confirmed that a reinforcement learning becomes more efficient with multiplex learning spaces, a whole and one or two of partial learning spaces. In this paper, we extend the number of partial spaces to N, and study about the learning efficiency. We investigate the learning inefficiency in a case of increasing the number of unavailable partial learning spaces in experimental simulations. We confirmed that increasing did not influence the learning in an inefficient way, and that only one available partial learning space influenced the learning in an efficient way. As a result, we found that more multiplexing becomes more efficient for the learning, even if the partial learning spaces include some unavailable ones.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top