ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-12b3
会議情報

カトコスキー把持分類に基づいた把持時の脳波情報からの特徴抽出および識別手法の性能比較
内山 瑛美子前川 知行草島 育生高野 渉中村 仁彦
著者情報
会議録・要旨集 フリー

詳細
抄録

In this paper, we construct 6 types of multi-class classifiers and compare the performance of them. In the feature extraction phase, CSP filter (common spatial pattern filter) and PCA (principle component analysis) and LDA (linear discriminant analysis) are used. In the classification phase, kNN (k-nearest neighbor) method and SVM (support vector machine) are used. As a result, the best classifier for discriminating grasping patterns was CSP/kNN classifier (We set the selective number k as 1). The best classification rate for 9-class power-type grasping patterns of CSP/kNN classifier was 48% and the classification rate for 7-class precision-type grasping patterns of CSP/kNN classifier was 40%.

著者関連情報
© 2016 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top