ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-F02
会議情報

Recurrent Convolutional Neural Network に基づく一人称視点画像から のロボッ ト の自己位置推定
杉中 出帆飯塚 博幸山本 雅人
著者情報
会議録・要旨集 フリー

詳細
抄録

Many robots are pervading environments of human daily life. It is crucial for those robots to estimate the current self-positions. This is called robot localization. In this paper, we propose a method using a recurrent convolutional neural network (RCNN), which is known as one of deep learning, to achieve robot localization. RCNN is a neural network model that has a convolutional architecture known as CNN with recurrent nodes. We train RCNN to estimate the current position of a robot from the view images of the first person perspectives. Our experimental results show that the estimation error decrease when the successive view images are given and it can estimate the current position accurately.

著者関連情報
© 2017 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top