ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-G01
会議情報

場の構築を目的としたマルチロボットの協調動作学習
山川 貴史鈴木 剛
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper discusses a multi-agent reinforcement learning (MARL) in a multi-agent robot system (MARS) to get cooperative behaviors for field constructions such as an environment creation and an information field construction. To learn cooperative behaviors by a Q-learning in dynamic environments where the MARS operates, we propose a method to give appropriate rewards to agents by switching two learning expressions situationally. Simulation results show that all agents in MARS obtain cooperative behaviors for environment arrangement with performing mutual collision avoidance by the proposed method.

著者関連情報
© 2017 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top