ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-G04
会議情報

ROS プラットフォームにおける移動ロボットの自律走行のための 動作獲得学習および走行シミュレーション
上山 晃司森岡 一幸
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper describes a system for learning and autonomous navigation of mobile robots on ROS (Robot Operating System) platform. Applying learning of autonomous navigation in the ROS platform will increase availability for autonomous navigation in actual environments, because the ROS platform is often utilized for navigation system in actual environments such as Tsukuba Challenge. Especially, in this study, a learning system based on Deep Q-Networks, that is effective for learning tasks in high-dimensional state spaces, is introduces. At first, simple maze problems as simplified robot navigation environment are solved. Then, the maze problems are applied to simulated robot navigation tasks on ROS platform. Learning results show that the robot obtained a policy to reach any destinations in the maps of the ROS simulator.

著者関連情報
© 2017 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top