ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-J01
会議情報

CNNとRBPFを用いた自己位置と位置推定結果に対する信頼度の同時推定
*赤井 直紀モラレス ルイス洋一村瀬 洋
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper presents a novel localization approach that simultaneously estimates a robot's pose and reliability of its estimation. To estimate the reliability, a convolutional neural network (CNN) is used as a decision maker for distinguishing whether localization has failed. The CNN, however, sometimes makes wrong decisions. To reduce influence of the wrong decisions, Rao-Blackwellized particle filter (RBPF) is employed. The reliability can be robustly estimated using the RBPF and it exactly describes successful and failure localization results. Exact performance of the reliability is shown through the experiments.

著者関連情報
© 2018 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top