主催: 一般社団法人 日本機械学会
会議名: ロボティクス・メカトロニクス 講演会2019
開催日: 2019/06/05 - 2019/06/08
In this paper, we propose a model-based reinforcement learning framework combining Model Predictive Path Integral (MPPI) with a Deep Path-cost Predictor that outputs a state-trajectory cost given an image sequence and a control input sequence as input. We validate the effectiveness of the proposed method by carrying out 2DOF robot arm reaching tasks with multiple targets in simulation.