ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-G03
会議情報

Monte Carlo Dropoutを適用したEnd-to-End自己位置推定とMCLの融合
*赤井 直紀平山 高嗣村瀬 洋
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper presents a hybrid localization method using model- and learning-based methods. Monte Carlo localization (MCL) is used as a model-based method. End-to-end (E2E) learning is used to implement a learning-based localization method. Monte Carlo dropout is applied to the E2E localization and its output is treated as a probabilistic distribution. This distribution is then used as a proposal distribution and the E2E localization estimate is fused with MCL via importance sampling. Experimental results show that both the advantages are simultaneously leveraged while mitigating their disadvantages.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top