ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-I16
会議情報

強化学習による多指ハンドの低次元制御を実現するシナジーの獲得
*東 和樹元田 智大西村 優佑原 彰良濱本 孝仁原田 研介
著者情報
会議録・要旨集 認証あり

詳細
抄録

We propose a reinforcement learning platform to learn to perform various tasks with a robotic hand to acquire a synergy. The model of deep reinforcement learning is trained to grasp an object with a multi-fingered hand. The synergy space is calculated by principal component analysis of hand postures when the task is successfully executed. The reward system is designed to minimize the distance of orthogonal projection between the posture and the synergy space, and the synergy space is acquired simultaneously with reinforcement learning.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top