ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-I17
会議情報

ガウス過程に基づく自己駆動型方策による方策探索
*佐々木 光松原 崇充
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this paper, we propose a policy search reinforcement learning method with a non-parametric policy model and self-triggered control. We formulate a self-triggered policy search that employs a control policy and an execution length policy to reduce the number of action decisions in a trial. Our method employs sparse Gaussian process as a policy model with a self-triggered control framework, and its update law for maximizing return is derived based on variational Bayesian learning. We conducted simulations for a reaching task in a two-dimensional environment and confirmed the effectiveness of our proposed method.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top