ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P2-C06
会議情報

画像特徴点ベースのSLAMの精度向上を目指したセマンティックセグメンテーションによる不要特徴点排除
*箱谷 知輝佐久間 涼太小枝 正直濵田 彬弘澤田 篤郎小川 修
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this research, we propose the method for improving the accuracy of feature-based SLAM. Instead of giving images directly to SLAM, partly blurred images to eliminate unnecessary feature points that could influence the accuracy of SLAM are given. To generate partly blurred images, we employ Semantic Segmentation that generates binary mask images to separate biological objects and surgical tools. By performing the image blur process only in the region of surgical tools, we eliminate feature points on the surgical tools that impair the accuracy of SLAM. We conducted preliminary experiments and confirmed our proposed method worked well in some situations.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top