ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P2-C05
会議情報

画像特徴点に基づくSLAMの精度向上を目的としたニューラルネットワークによる不要特徴点判別
*佐久間 涼太箱谷 知輝小枝 正直濵田 彬弘澤田 篤郎小川 修
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this research, we propose the method for improving the accuracy of feature-based SLAM. Unnecessary feature points that SLAM uses for mapping are removed by discrimination by a neural network system. Our neural network system was trained by the coordinates and pixel values of the feature points as feature vectors and outputs a feature point in a surgical image is a biological part or a surgical instrument part. Feature points of surgical instruments may cause noise in SLAM, and the elimination of these feature points is expected to improve the accuracy of SLAM. The experimental results showed our neural network system was able to discriminate the feature points with high accuracy in the validation images, which is the same scene as the training images.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top