ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-B08
会議情報

単眼カメラ画像入力に基づく自律走行モデル獲得のためのシミュレーション環境最適化
*海保 諒鶴田 龍登森岡 一幸
著者情報
会議録・要旨集 認証あり

詳細
抄録

This study introduces a training system of action models for mobile robot navigation based on reinforcement learning with monocular camera input. The authors have developed a synthesis system that includes automatically building simulation environments and training of models. The purpose of this paper is to obtain a general-purpose action model by quantitatively verifying the effects of the proposed system. The simulation result shows that the trained model with the proposed system provides stable navigation performance.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top