ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-B10
会議情報

小型凝集装置を用いた深層学習による凝集後濁度予測手法の検討
*鈴木 昭弘川上 敬山村 寛根本 雄一大江 亮介
著者情報
会議録・要旨集 認証あり

詳細
抄録

The objective of this paper is to predict the turbidity after flocculation from floc images using deep convolutional neural network(DCNN) with small flocculation plant. Our goal is to develop a system to control the water purification process using the predictive model. The following results were recognize from experiments using floc images from a small flocculation plant: 1) the DCNN model is able to recognize the image characteristics of the flock; 2) the prediction accuracy is around 0.10 for the teacher data and around 0.31 for the test data.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top