ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-H03
会議情報

混合エキスパートによる複数先視野予測モジュールを用いたタスクの学習
*上和野 雄也鈴木 彼方千葉 直也森 裕紀尾形 哲也
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this study, we proposed a subtask that combines multiple scales of visual field prediction and investigated its effectiveness for Embodied Question Answering (EQA). In EQA, it is desirable to be able to automatically select a prediction scale according to the situation, because the path to the target object depends on the instructions given. However, previous studies have only examined subtask learning with a limited prediction scale and target. We propose a mixture of experts model in which multiple expert networks predict future images of different time steps, and a higher-level gating network estimates the distribution of each expert’s output. By sequentially adjusting the output of the expert network, the proposed method enables robot navigation considering multiple prediction scales. Comparison experiments on the EQA MP3D dataset show that the proposed method improves the model’s prediction accuracy regardless of the distance to the target.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top