ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A2-G06
会議情報

未知障害物によるモンテカルロ自己位置推定の破綻を防ぐための観測範囲の制限と選択
*池邉 龍宏林原 靖男上田 隆一
著者情報
会議録・要旨集 認証あり

詳細
抄録

We modify Monte Carlo localizaiton as it can eliminate noisy measurements from a LiDAR derived from unknown obstacles. This modified method makes each particle have its observation direction with a range smaller than that of the LiDAR. In the calculations of Bayes theorem and resampling, the directions of the observation are changed as particles do not observe unrecorded obstacles on the map for self-localization. We have examined this method in a simulator. The result suggests that a restriction of the observation range makes MCL stable at the expense of precision.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top