ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-G05
会議情報

深層生成モデルとパーティクルフィルタの融合による自己位置推定
*塩島 諒子入江 清林原 靖男
著者情報
会議録・要旨集 認証あり

詳細
抄録

The purpose of this research is to construct a probabilistic model of observation from data for the problem of self-position estimation from camera images. In this paper, we propose a method to fuse particle filters with probabilistic distribution images of the robot’s position and posture generated using a deep generative model called Conditional Variational Autoencoder(CVAE). To evaluate the effectiveness of the proposed method, experiments and evaluations were conducted on self-position estimation using single images and particle filter, respectively. As a result, the estimation error was reduced by fusing the generated image and particle filter, confirming the effectiveness of the proposed method.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top