ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-Q10
会議情報

リカレントニューラルネットワークによる運転時の人間行動モデルの性能評価
―モデル予測制御を用いた場合との比較検討―
*関 涼夏石川 潤
著者情報
会議録・要旨集 認証あり

詳細
抄録

This article discusses the results of evaluating the performance of a recurrent neural network (RNN)-based human behavior model proposed for estimating human behavior that can be used for driver assistance. Parameters of the RNN-based model were identified so that the response of the closed-loop system can reproduce the actual output acquired through the positioning experiment with human steering wheel operation. The performance is evaluated in both the time and frequency domains, compared to the model based on model predictive control (MPC). As a result, it was confirmed that the RNN-based model reproduced human behavior with almost all the same accuracy as the MPC-based model.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top